Available opacity species

All the opacities that can be downloaded via Keeper in petitRADTRANS are listed below.

Important

petitRADTRANS will automatically download opacity tables if you request a species that is not on your hard drive yet, but available on Keeper. Additional sources of opacities, and how to calculate and add your own, are described in “Adding opacities”.

Important

Please cite the reference mentioned in the description when making use of a line species listed below. Information about the opacity source are also available in the opacity HDF file under the key DOI and its attributes.

Important

Converting pRT2 opacities: if you added opacities to pRT yourself in the past, before pRT3 was released (May 2024): these need to be converted to pRT3 format. This is explained in “Converting pRT2 opacities to pRT3 format”.

Line species

To add more line opacities in addition to what is listed below, please see “Adding opacities”, among them how to plug-and-play install the ExoMol opacities calculated in the pRT format, available from the ExoMol website.

Low-resolution opacities ("c-k", \(\lambda/\Delta\lambda=1000\))

In correlated-k mode ("c-k"), most of the molecular opacities are calculated considering only the main isotopologue. Most of the time, the differences with including all isotopologues, at these resolving powers, are negligible (see comparison with Baudino et al., 2017).

For some species such as CO and TiO, the contribution of all isotopologues is considered, following their natural abundance on Earth. Some secondary isotopologues are also available. This has been done because of a large natural abundance ratio between the isotopes of some elements (e.g. Ti), and/or because of the significant spectral contribution of secondary isotopologues at the considered resolution (e.g. 12CO/13CO).

All c-k opacities referenced here have a resolving power of 1000 and cover at least wavelengths 0.3 to 50 µm. The actual wavelength coverage is given by looking at the full filenames in the table below. Pressure and temperature grids may vary and are thus treated on a per-species basis within pRT. All opacities are stored at 16 discrete g values of the cumulative opacity distribution function, per spectral bin, as desribed in Mollière et al. (2019), their Section 3.1.

Important

Correlated-k tables with the extension .ktable.petitRADTRANS.h5 from ExoMol can be used directly.

The available correlated-k opacities are listed below. When multiple source are available for a species, the recommended one is indicated in bold.

Short species name*

Unique species name**

File name

Reference for line list (mostly DOIs)

Contributor

Al

27Al__Kurucz

27Al__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

AlH

27Al-1H__AlHambra

27Al-1H__AlHambra.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/sty1524

AlO

27Al-16O__ATP

27Al-16O__ATP.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/stv507

Al+

27Al_+__Kurucz

27Al_p__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

C2H2

12C2-1H2__aCeTY

12C2-1H2__aCeTY.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/staa229

C2H4

12C2-1H4__MaYTY

12C2-1H4__MaYTY.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/sty1239

12C-1H3-2H

12C-1H3-2H__HITRAN

12C-1H3-2H__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2013.07.002

CH4

12C-1H4__HITEMP

12C-1H4__HITEMP.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.3847/1538-4365/ab7a1a

CH4

12C-1H4__YT34to10

12C-1H4__YT34to10.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1051/0004-6361/201731026

13C-1H3-2H

13C-1H3-2H__HITRAN

13C-1H3-2H__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2021.107949

13C-1H4

13C-1H4__HITRAN

13C-1H4__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2021.107949

CO

12C-16O__HITEMP

12C-16O__HITEMP.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2010.05.001

13C-16O

13C-16O__HITEMP

13C-16O__HITEMP.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2010.05.001

13C-16O

13C-16O__Li2015

13C-16O__Li2015.R1000_0.3-50mu.ktable.petitRADTRANS.h5

10.1088/0067-0049/216/1/15

C-O-NatAbund

C-O-NatAbund__Chubb

C-O-NatAbund__Chubb.R1000_0.3-50mu.ktable.petitRADTRANS.h5

10.1088/0067-0049/216/1/15

C-O-NatAbund

C-O-NatAbund__HITEMP

C-O-NatAbund__HITEMP.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2010.05.001

CO2

12C-16O2__UCL-4000

12C-16O2__UCL-4000.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/staa1874

C-S2-NatAbund

C-S2-NatAbund__HITRAN

C-S2-NatAbund__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2021.107949

CaH

40Ca-1H__MoLLIST

40Ca-1H__MoLLIST.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2011.09.010

Ca+

40Ca_+__Kurucz

40Ca_p__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

CrH

52Cr-1H__MoLLIST

52Cr-1H__MoLLIST.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1086/342242

Fe

56Fe__Kurucz

56Fe__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

FeH

56Fe-1H__MoLLIST

56Fe-1H__MoLLIST.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1051/0004-6361/201015220

Fe+

56Fe_+__Kurucz

56Fe_p__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

H2

1H2__HITRAN

1H2__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2013.07.002

1H-2H-16O

1H-2H-16O__HITRAN

1H-2H-16O__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2013.07.002

H2O

1H2-16O__HITEMP

1H2-16O__HITEMP.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2010.05.001

H2O

1H2-16O__POKAZATEL

1H2-16O__POKAZATEL.R1000_0.3-50mu.ktable.petitRADTRANS.h5

10.1093/mnras/sty1877

1H2-17O

1H2-17O__HITRAN

1H2-17O__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2013.07.002

1H2-18O

1H2-18O__HITRAN

1H2-18O__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2013.07.002

H2S

1H2-32S__AYT2

1H2-32S__AYT2.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/stw1133

HCN

1H-12C-14N__Harris

1H-12C-14N__Harris.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/stt2011

K

39K__Allard

39K__Allard.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1051/0004-6361/201935470

K

39K__Burrows

39K__Burrows.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1086/345412

K

39K__LorCut

39K__LorCut.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://vald.astro.uu.se/

Li

7Li__Kurucz

7Li__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

Mg

24Mg__Kurucz

24Mg__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

MgH

24Mg-1H__MoLLIST

24Mg-1H__MoLLIST.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/stt510

MgO

24Mg-16O__LiTY

24Mg-16O__LiTY.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/stz912

Mg+

24Mg_+__Kurucz

24Mg_p__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

NH3

14N-1H3__CoYuTe

14N-1H3__CoYuTe.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/stz2778

15N-1H3

15N-1H3__HITRAN

15N-1H3__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2021.107949

Na

23Na__Allard

23Na__Allard.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1051/0004-6361/201935593

Na

23Na__Burrows

23Na__Burrows.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1086/345412

Na

23Na__LorCut

23Na__LorCut.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://vald.astro.uu.se/

NaH

23Na-1H__Rivlin

23Na-1H__Rivlin.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/stv979

O

16O__Kurucz

16O__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

16O-17O

16O-17O__HITRAN

16O-17O__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2021.107949

16O-18O

16O-18O__HITRAN

16O-18O__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2021.107949

O2

16O2__HITRAN

16O2__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2021.107949

O3

16O3__HITRAN

16O3__HITRAN.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2013.07.002

OH

16O-1H__HITEMP

16O-1H__HITEMP.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1016/j.jqsrt.2018.06.016

PH3

31P-1H3__SAlTY

31P-1H3__SAlTY.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/stu2246

SH

32S-1H__GYT

32S-1H__GYT.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/sty939

SO2

32S-16O2__ExoAmes

32S-16O2__ExoAmes.R1000_0.3-50mu.ktable.petitRADTRANS.h5

10.1093/mnras/stw849

Si

28Si__Kurucz

28Si__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

SiO

28Si-16O__SiOUVenIR

28Si-16O__SiOUVenIR.R1000_0.1-50mu.ktable.petitRADTRANS.h5

10.1093/mnras/stab3267

SiO2

28Si-16O2__OYT3

28Si-16O2__OYT3.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

www.exomol.com/data/molecules/SiO2/28Si-16O2/OYT3

Si+

28Si_+__Kurucz

28Si_p__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

Ti

48Ti__Kurucz

48Ti__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

TiO

48Ti-16O__McKemmish

48Ti-16O__McKemmish.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1093/mnras/stz1818

Chubb et al. (2021), ExoMolOP

TiO

48Ti-16O__Plez

48Ti-16O__Plez.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1051/0004-6361/201935470

Ti-O-NatAbund

Ti-O-NatAbund__McKemmish

Ti-O-NatAbund__McKemmish.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1093/mnras/stz1818

Chubb et al. (2021), ExoMolOP

Ti-O-NatAbund

Ti-O-NatAbund__Plez

Ti-O-NatAbund__Plez.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1051/0004-6361/201935470

Ti+

48Ti_+__Kurucz

48Ti_p__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

V

51V__Kurucz

51V__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

VO

51V-16O__Plez

51V-16O__Plez.R1000_0.1-250mu.ktable.petitRADTRANS.h5

10.1051/0004-6361/201935470

VO

51V-16O__VOMYT

51V-16O__VOMYT.R1000_0.3-50mu.ktable.petitRADTRANS.h5.ktable.petitRADTRANS.h5

10.1093/mnras/stw1969

V+

51V_+__Kurucz

51V_p__Kurucz.R1000_0.1-250mu.ktable.petitRADTRANS.h5

http://kurucz.harvard.edu/

K. Molaverdikhani

*: This is the “minimal name” you have to provide pRT with in order to be able to load this opacity. If there are multiple options (e.g., you request 'CO', but there is the HITEMP and the Exomol line list), it will ask you which one you prefer.

**: This is the unique name for which there is no source ambiguity, when requested in pRT. The default resolving power and wavelength range will be used, unless more information are given.

High resolution opacities ("lbl", \(\lambda/\Delta\lambda=10^6\))

All lbl opacities referenced here have a wavelength binning of \(\lambda/\Delta\lambda=10^6\) and all files cover wavelengths from 0.3 to 28 µm exactly. We are currently working on a version that allows variable wavelength ranges per species, as already implemented for the c-k mode. Pressure and temperature grids may vary.

Important

TauREx’ cross-section tables with the extension .xsec.TauREx.h5 from ExoMol can be used directly, but these have a lower wavelength binning \(\lambda/\Delta\lambda=15,000\), so should only be used for data with a spectral resolution \(R\lesssim 150\), to avoid opacity sampling noise.

The available line-by-line opacities are listed below. When multiple source are available for a species, the recommended one is indicated in bold.

Short species name*

Unique species name**

Reference

Contributor

Al

27Al__Kurucz.

Kurucz

K. Molaverdikhani

B

11B__Kurucz.

Kurucz

K. Molaverdikhani

Be

9Be__Kurucz.

Kurucz

K. Molaverdikhani

C2H2

12C2-1H2__HITRAN

10.1016/j.jqsrt.2013.07.002

Ca

40Ca__Kurucz

Kurucz

K. Molaverdikhani

Ca+

40Ca_p__Kurucz

Kurucz

K. Molaverdikhani

CaH

40Ca-1H__MoLLIST

Li et al. (2012)

CH3D

12C-1H3-2H__HITRAN

10.1016/j.jqsrt.2013.07.002

CH4

12C-1H4__Hargreaves

HITEMP, Hargreaves et al. (2020)

13CH4

13C-1H4__HITRAN

10.1016/j.jqsrt.2021.107949

CO-NatAbund

C-O-NatAbund__HITEMP

10.1016/j.jqsrt.2010.05.001

CO

12C-16O__HITEMP

10.1016/j.jqsrt.2010.05.001

12C-17O

12C-17O__HITRAN

10.1016/j.jqsrt.2013.07.002

12C-18O

12C-18O__HITRAN

10.1016/j.jqsrt.2013.07.002

13CO

13C-16O__HITRAN

10.1016/j.jqsrt.2013.07.002

13C-17O

13C-17O__HITRAN

10.1016/j.jqsrt.2013.07.002

13C-18O

13C-18O__HITRAN

10.1016/j.jqsrt.2013.07.002

CO2

12-C-16O2__HITEMP

10.1016/j.jqsrt.2010.05.001

Cr

52Cr__Kurucz.

Kurucz

K. Molaverdikhani

Fe

56Fe__Kurucz.

Kurucz

K. Molaverdikhani

Fe+

56Fe_p__Kurucz.

Kurucz

K. Molaverdikhani

FeH

56Fe-1H__MoLLIST

10.1016/j.jqsrt.2019.106687

H2

1H2__HITRAN

10.1016/j.jqsrt.2013.07.002

HD

1H-2H__HITRAN

10.1016/j.jqsrt.2013.07.002

H2O

1H2-16O__HITEMP

10.1016/j.jqsrt.2010.05.001

H2O

1H2-16O__POKAZATEL

ExoMol, Pokazatel et al. (2018)

Sid Gandhi

HDO

1H-2H-16O__HITRAN

10.1016/j.jqsrt.2013.07.002

H2-17O

1H2-17O__HITRAN

10.1016/j.jqsrt.2013.07.002

HD-17O

1H-2H-17O

10.1016/j.jqsrt.2013.07.002

H2-18O

1H2-18O__HITRAN

10.1016/j.jqsrt.2013.07.002

HD-18O

1H-2H-18O

10.1016/j.jqsrt.2013.07.002

H2S

1H2-32S__HITRAN

10.1016/j.jqsrt.2013.07.002

HCN

1H-12C-14N__Harris

10.1111/j.1365-2966.2005.09960.x

K

39K__Allard

VALD, Allard wings, see Mollière+2019

K

39K__Burrows

VALD, Burrows wings

K

39K_LorCut

VALD, Lorentzian wings, see Mollière+2019

Li

7Li__Kurucz

Kurucz

K. Molaverdikhani

Mg

24Mg__Kurucz

Kurucz

K. Molaverdikhani

Mg+

24Mg_p__Kurucz

Kurucz

K. Molaverdikhani

N

14N__Kurucz

Kurucz

K. Molaverdikhani

Na

23Na__Allard

VALD, Allard wings, see Mollière+2019

Na

23Na__Burrows

VALD, Burrows wings

Na

23Na_LorCut

VALD, Lorentzian wings, see Mollière+2019

NH3

14N-1H3__HITRAN

10.1016/j.jqsrt.2013.07.002

NH3

14N-1H3__CoYuTe

ExoMol, Coles et al. (2019)

Sid Gandhi (400–1600 K)

O3

16O3__HITRAN

10.1016/j.jqsrt.2013.07.002

OH

16O-1H__MoLLIST

10.1016/j.jqsrt.2010.05.001

PH3

31P-1H3__SAlTY

ExoMol, Sousa-Silva et al. (2014), converted from DACE

Adriano Miceli

Si

28Si__Kurucz

Kurucz

K. Molaverdikhani

SiO

28Si-16O__EBJT

10.1093/mnras/stt1105

Ti

48Ti__Kurucz

Kurucz

K. Molaverdikhani

TiO

Ti-O-NatAbund__Plez

  1. Plez, see Mollière+2019

TiO

Ti-O-NatAbund__Toto

ExoMol, McKemmish et al. (2019)

46TiO

46Ti-16O__Plez

  1. Plez, see Mollière+2019

46TiO

46Ti-16O__Toto

ExoMol, McKemmish et al. (2019)

47TiO

47Ti-16O__Plez

  1. Plez, see Mollière+2019

47TiO

47Ti-16O__Toto

ExoMol, McKemmish et al. (2019)

48TiO

48Ti-16O__Plez

  1. Plez, see Mollière+2019

48TiO

48Ti-16O__Toto

ExoMol, McKemmish et al. (2019)

49TiO

49Ti-16O__Plez

  1. Plez, see Mollière+2019

49TiO

49Ti-16O__Toto

ExoMol, McKemmish et al. (2019)

50TiO

50Ti-16O__Plez

  1. Plez, see Mollière+2019

50TiO

50Ti-16O__Toto

ExoMol, McKemmish et al. (2019)

V

51V__Kurucz

Kurucz

K. Molaverdikhani

V+

51V_p__Kurucz

Kurucz

K. Molaverdikhani

VO

51V-16O__Plez

  1. Plez, see Mollière+2019

VO

51VO__VOMYT

McKemmish et al. (2016)

S. de Regt

VO_ExoMol_Specific_Transitions !!

!! Exact difference with “normal” version unknown !!

Most accurate transitions from McKemmish et al. (2016)

S. de Regt

Y

89Y__Kurucz

Kurucz

K. Molaverdikhani

*: This is the “minimal name” you have to provide pRT with in order to be able to load this opacity. If there are multiple options (e.g., you request 'CO', but there is the HITEMP and the Exomol line list), it will ask you which one you prefer.

**: This is the unique name for which there is no source ambiguity, when requested in pRT. The default resolving power and wavelength range will be used, unless more information are given.

File naming convention

In petitRADTRANS, line species opacities follow a naming convention identical to that of ExoMol. The isotopes are explicitly displayed, for example, 13C-16O means a CO molecule with a carbon-13 and an oxygen-16 atom. When the opacity corresponds to a mixture of isotopologues, using the Earth’s natural isotope abundances, the flag NatAbund is used.

Note that writing the full file opacity name when using a Radtrans object is not necessary, as partial naming is allowed. When no isotopic information is given, the main isotopologue is picked (e.g. H2O is equivalent to 1H2-16O).

Important

The line_species opacity name and the mass_fractions dictionary keys used for spectral calculation must match exactly.

Below are some working opacity name examples for the Exomol water opacity (full file name 1H2-16O__POKAZATEL.R1000_0.1-250mu.ktable.petitRADTRANS.h5)

  • H2O

  • H2O__POKAZATEL

  • H2O.R1000

  • 1H2-16O

  • 1H2-16O__POKAZATEL.R1000_0.1-250mu

As mentioned above, if you hand a non-unique name to pRT (e.g., 'H2O', but you have '1H2-16O__POKAZATEL' and '1H2-16O__HITEMP' on your hard drive) pRT will ask you for your preference the first time you do this, and then save this preference information to petitradtrans_config_file.ini in the .petitradtrans folder in your home directory. Also see here for more information on the config file. If your preference changes, you have to update this file. In any case, pRT will always show you which file it loaded when you generate a pRT object, by printing it to the console.

Hereafter are the explicit file naming rules for line species:

  • Species names are based on their chemical formula.

  • Elements in the chemical formula are separated by -.

  • The number in front of the element indicates its isotope, when relevant.

  • The number after the element indicates its (stoichiometric) quantity in the molecule, when relevant.

  • Opacities combining isotopologues following their natural (i.e. Earth) abundance are indicated with the string -NatAbund after the chemical formula. In that case, no isotope number should be present next to the elements.

  • The charge of the species is indicated after the formula, starting with _. The character p is used for positive charges and n for negative charges.

  • The number in front of the charge indicates the charge amount, when relevant.

  • The source (e.g., line list database) of the opacity is indicated after the charge, starting with __.

  • The spectral information of the opacity is indicated after the source, starting with ..

  • The character R indicates constant resolving power (\(\lambda/\Delta\lambda\) constant).

  • The string DeltaWavenumber indicates constant spacing in wavenumber (\(\Delta\nu\) constant).

  • The string DeltaWavelength indicates constant spacing in wavelength (\(\Delta\lambda\) constant).

  • The number coming after the above indicates the spacing or resolution. .R100 would correspond to \(\lambda/\Delta\lambda=100\), for example.

  • The wavelength range, in µm, is indicated afterward, starting with a _ and ending with mu. The upper and lower boundaries are separated with -.

  • The nature of the opacity is indicated afterward, starting with a .. It is ktable for correlated-k opacities, and xsec for line-by-line opacities.

  • The extension of the file is always .petitRADTRANS.h5.

Gas continuum opacity sources

Collision-induced absorption opacities

The available collision-induced absorption opacities are listed below.

Species name

File name

Reference

CO2--CO2

C-O2–C-O2-NatAbund.DeltaWavelength1e-6_3-100mu.ciatable.petitRADTRANS

Karman et al. (2019), and references therein.

H2--H2

H2–H2-NatAbund__BoRi.R831_0.6-250mu.ciatable.petitRADTRANS

Borysow et al. (2001, 2002)

H2--He

H2–He-NatAbund__BoRi.DeltaWavenumber2_0.5-500mu.ciatable.petitRADTRANS

Borysow et al. (1988, 1989a, 1989b)

H2O--H2O

H2-O–H2-O-NatAbund.DeltaWavenumber10_0.5-77mu.ciatable.petitRADTRANS

Kofman & Villanueva (2021)

H2O--N2

H2-O–N2-NatAbund.DeltaWavenumber10_0.5-77mu.ciatable.petitRADTRANS

Kofman & Villanueva (2021)

N2--H2

N2–H2-NatAbund.DeltaWavenumber1_5.3-909mu.ciatable.petitRADTRANS

Karman et al. (2019), and references therein.

N2--He

N2–He-NatAbund.DeltaWavenumber1_10-909mu.ciatable.petitRADTRANS

Karman et al. (2019), and references therein.

N2--N2

N2–N2-NatAbund.DeltaWavelength1e-6_2-100mu.ciatable.petitRADTRANS

Karman et al. (2019), and references therein.

N2--O2

N2–O2-NatAbund.DeltaWavelength1e-6_0.72-5.4mu.ciatable.petitRADTRANS

Karman et al. (2019), and references therein.

O2--O2

O2–O2-NatAbund.DeltaWavelength1e-6_0.34-8.7mu.ciatable.petitRADTRANS

Karman et al. (2019), and references therein.

H- bound-free and free-free absorption

In addition to CIA, petitRADTRANS can also add H- (bound-free and free-free) absorption. In that case, the H- string must be present in the gas_continuum_contributors list. In the mass_fractions dictionary, the keys H-, H and e- must be present as well. The H- opacity is implemented as reported in Gray (2008).

File naming convention

Gas continuum sources follow a naming convention similar to that of the line species. For collision-induced absorptions (CIA), the 2 colliding species are separated by --.

Most of the CIA are given for species with their Earth natural isotopologue abundances. The very low resolving power of those opacities makes isotope-specific data largely irrelevant anyway.

Caution

Make sure to add abundances for all continuum species you request. For example, if a gas_continuum_contributors opacity entry name is a CIA species, the mass_fractions dictionary keys must contain the colliding species. However, if a species that you need for a continuum opacity source is already added as line absorber mass fraction, even with extra identifiers (e.g., 'H2O__POKAZATEL'), do not add another entry to the mass fraction dictionary (so do not add 'H2O' if you requested 'H2O--H2O' CIA, in our example)! The danger is that the abundance is counted twice when calculating the mean molar mass of the atmosphere (which happens automatically in SpectralModel objects, or if you call petitRADTRANS.chemistry.utils.compute_mean_molar_masses()). Instead, pRT will cut off flags such as __POKAZATEL and sum over all isotopologues to build the continuum absorber mass fractions. If you add a continuum species for which no corresponding line opacity is loaded, you must add a mass fraction entry, however.

Below are some working opacity name examples:

  • File names:

    • H2--H2-NatAbund__BoRi.R831_0.6-250mu.ciatable.petitRADTRANS.h5

    • H2–He-NatAbund__BoRi.DeltaWavenumber2_0.5-500mu.ciatable.petitRADTRANS

  • Names valid in scripts:

    • H2-H2

    • H2--He

    • He-H2

    • H2--He-NatAbund__BoRi.DeltaWavenumber2_0.5-500mu

Hereafter are the explicit file naming rules for line species:

  • Gas continuum species names follow the same convention as the line species, with the following additions.

  • For collision induced absorptions, the two colliding species are separated with --. The -NatAbund flag must be placed after the two species.

  • The extension of the file is always .ciatable.petitRADTRANS.h5.

Cloud opacities

Available cloud opacities

All clouds opacities referenced here have a wavelength spacing of \(\lambda/\Delta\lambda=39\) and cover at most wavelengths from 0.1 to 250 µm. Please check the actual wavelength range by consulting the file names. The opacities will be set to 0 outside of that range. Since cloud opacities vary slowly with wavelength, it is OK to combine them with higher resolution line opacities.

All solid condensate opacities listed are available for both the DHS and Mie scattering particle shapes (more information can be found here). They are either for crystalline or amorphous particles, sometimes both are available for a given species.

The cloud opacities have been calculated using OpacityTool, written by Michiel Min and used in, for example, Min et al. (2005). OpacityTool makes use of software published in Toon et al. (1981).

Important

Currently no space group information are given for the crystal species. We plan to add them in the future.

Species name to be handed to pRT object

Long file name

Reference for optical data (mostly DOIs)

Al2O3(s)_crystalline__DHS

Al2-O3-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1006/icar.1995.1055

Al2O3(s)_crystalline__Mie

Al2-O3-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1006/icar.1995.1055

C(s)_crystalline__DHS

C-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Draine (2003), AJ., 598:1026

C(s)_crystalline__Mie

C-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Draine (2003), AJ., 598:1026

CaTiO3(s)_crystalline__DHS

Ca-Ti-O3-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Posch et al. (2003), Ap&SS, 149:437; Ueda et al 1998 J. Phys.: Condens. Matter 10 3669; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

CaTiO3(s)_crystalline__Mie

Ca-Ti-O3-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Posch et al. (2003), Ap&SS, 149:437; Ueda et al 1998 J. Phys.: Condens. Matter 10 3669; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

Cr(s)__DHS

Cr-NatAbund(s)_structureUnclear__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Lynch&Hunter (1991) in Palik: “Handbook of Optical Constants of Solids”; Rakic et al. (1998) Applied Optics Vol. 37, Issue 22

Cr(s)__Mie

Cr-NatAbund(s)_structureUnclear__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Lynch&Hunter (1991) in Palik: “Handbook of Optical Constants of Solids”; Rakic et al. (1998) Applied Optics Vol. 37, Issue 22

Fe(s)__DHS

Fe-NatAbund(s)_amorphous__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1086/173677

Fe(s)__Mie

Fe-NatAbund(s)_amorphous__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1086/173677

Fe(s)_crystalline__DHS

Fe-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

1996A&A…311..291H

Fe(s)_crystalline__Mie

Fe-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

1996A&A…311..291H

Fe2O3(s)__DHS

Fe2-O3-NatAbund(s)_structureUnclear__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Amaury H.M.J. Triaud, in Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

Fe2O3(s)__Mie

Fe2-O3-NatAbund(s)_structureUnclear__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Amaury H.M.J. Triaud, in Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

Fe2SiO4(s)__DHS

Fe2-Si-O4-NatAbund(s)_structureUnclear__DHS.R39_0.4-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Fabian et al. (2001), A&A Vol. 378; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

Fe2SiO4(s)__Mie

Fe2-Si-O4-NatAbund(s)_structureUnclear__Mie.R39_0.4-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Fabian et al. (2001), A&A Vol. 378; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

FeO(s)_crystalline__DHS

Fe-O-NatAbund(s)_crystalline_000__DHS.R39_0.2-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Henning et al. (1995), Astronomy and Astrophysics Supplement, v.112, p.143; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

FeO(s)_crystalline__Mie

Fe-O-NatAbund(s)_crystalline_000__Mie.R39_0.2-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Henning et al. (1995), Astronomy and Astrophysics Supplement, v.112, p.143; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

FeS(s)_crystalline__DHS

Fe-S-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Pollack et al. (1994) ApJ, 421:615; Henning&Mutschke (1997), A&A, 327:743

FeS(s)_crystalline__Mie

Fe-S-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Pollack et al. (1994) ApJ, 421:615; Henning&Mutschke (1997), A&A, 327:743

H2O(l)__Mie

H2-O-NatAbund(l)__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

URI http://hdl.handle.net/10355/11599 : Segelstein, D. J. 1981, Master Thesis, University of Missouri-Kansas City, USA

H2O(s)_crystalline__DHS

H2-O-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1093/mnras/271.2.481

H2O(s)_crystalline__Mie

H2-O-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1093/mnras/271.2.481

H2SO4(l)__Mie-25-weight-percent-aqueous

H2-S-O4-NatAbund(l)__Mie-25-weight-percent-aqueous.R39_2.5-25mu.cotable.petitRADTRANS.h5

10.1364/AO.14.000208

H2SO4(l)__Mie-50-weight-percent-aqueous

H2-S-O4-NatAbund(l)__Mie-50-weight-percent-aqueous.R39_2.5-25mu.cotable.petitRADTRANS.h5

10.1364/AO.14.000208

H2SO4(l)__Mie-75-weight-percent-aqueous

H2-S-O4-NatAbund(l)__Mie-75-weight-percent-aqueous.R39_2.5-25mu.cotable.petitRADTRANS.h5

10.1364/AO.14.000208

H2SO4(l)__Mie-85-weight-percent-aqueous

H2-S-O4-NatAbund(l)__Mie-85-weight-percent-aqueous.R39_2.5-25mu.cotable.petitRADTRANS.h5

10.1364/AO.14.000208

H2SO4(l)__Mie-96-weight-percent-aqueous

H2-S-O4-NatAbund(l)__Mie-96-weight-percent-aqueous.R39_2.5-25mu.cotable.petitRADTRANS.h5

10.1364/AO.14.000208

KCl(s)_crystalline__DHS

K-Cl-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Edward D. Palik: Handbook of Optical Constants of Solids, Elsevier Science, 2012

KCl(s)_crystalline__Mie

K-Cl-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Edward D. Palik: Handbook of Optical Constants of Solids, Elsevier Science, 2012

Mg05Fe05SiO3(s)__DHS

Mg05-Fe05-Si-O3-NatAbund(s)_amorphous__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

1994A&A…292..641J

Mg05Fe05SiO3(s)__Mie

Mg05-Fe05-Si-O3-NatAbund(s)_amorphous__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

1994A&A…292..641J

Mg2SiO4(s)__DHS

Mg2-Si-O4-NatAbund(s)_amorphous__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1016/S0022-4073(02)00301-1

Mg2SiO4(s)__Mie

Mg2-Si-O4-NatAbund(s)_amorphous__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1016/S0022-4073(02)00301-1

Mg2SiO4(s)_crystalline__DHS

Mg2-Si-O4-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1002/pssb.2220550224

Mg2SiO4(s)_crystalline__Mie

Mg2-Si-O4-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1002/pssb.2220550224

MgAl2O4(s)_crystalline__DHS

Mg-Al2-O4-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Edward D. Palik: Handbook of Optical Constants of Solids, Elsevier Science, 2012

MgAl2O4(s)_crystalline__Mie

Mg-Al2-O4-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Edward D. Palik: Handbook of Optical Constants of Solids, Elsevier Science, 2012

MgFeSiO4(s)__DHS

Mg-Fe-Si-O4-NatAbund(s)_amorphous__DHS.R39_0.2-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Dorschner et al. (1995), A&A Vol. 300; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

MgFeSiO4(s)__Mie

Mg-Fe-Si-O4-NatAbund(s)_amorphous__Mie.R39_0.2-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Dorschner et al. (1995), A&A Vol. 300; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

MgO(s)_crystalline__DHS

Mg-O-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Roessler & Huffman (1981) in Palik: “Handbook of Optical Constants of Solids”

MgO(s)_crystalline__Mie

Mg-O-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Roessler & Huffman (1981) in Palik: “Handbook of Optical Constants of Solids”

MgSiO3(s)__DHS

Mg-Si-O3-NatAbund(s)_amorphous__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1016/S0022-4073(02)00301-1

MgSiO3(s)__Mie

Mg-Si-O3-NatAbund(s)_amorphous__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1016/S0022-4073(02)00301-1

MgSiO3(s)_crystalline__DHS

Mg-Si-O3-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

1998A&A…339..904J, 10.1086/192321

MgSiO3(s)_crystalline__Mie

Mg-Si-O3-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

1998A&A…339..904J, 10.1086/192321

MnS(s)__DHS

Mn-S-NatAbund(s)_structureUnclear__DHS.R39_0.1-190mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Huffman&Wild (1967) Phys. Rev., Vol 156:989; Montaner et al. (1979) Phys. Status Solidi Appl. Res., Vol. 52:597

MnS(s)__Mie

Mn-S-NatAbund(s)_structureUnclear__Mie.R39_0.1-190mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Huffman&Wild (1967) Phys. Rev., Vol 156:989; Montaner et al. (1979) Phys. Status Solidi Appl. Res., Vol. 52:597

Na2S(s)_crystalline__DHS

Na2-S-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1088/0004-637X/756/2/172

Na2S(s)_crystalline__Mie

Na2-S-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

10.1088/0004-637X/756/2/172

NaCl(s)_crystalline__DHS

Na-Cl-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Eldrige & Palik (1985) in Palik: “Handbook of Optical Constants of Solids”

NaCl(s)_crystalline__Mie

Na-Cl-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Eldrige & Palik (1985) in Palik: “Handbook of Optical Constants of Solids”

SiC(s)_crystalline__DHS

Si-C-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

1988A&A…194..335P

SiC(s)_crystalline__Mie

Si-C-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

1988A&A…194..335P

SiO(s)__DHS

Si-O-NatAbund(s)_amorphous__DHS.R39_0.1-100mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Philipp (1985) in Palik: “Handbook of Optical Constants of Solids”; Wetzel et al. (2013) A&A, Vol 553:A92

SiO(s)__Mie

Si-O-NatAbund(s)_amorphous__Mie.R39_0.1-100mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Philipp (1985) in Palik: “Handbook of Optical Constants of Solids”; Wetzel et al. (2013) A&A, Vol 553:A92

SiO2(s)__DHS

Si-O2-NatAbund(s)_amorphous__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Henning&Mutschke (1997), A&A Vol. 327; Philipp (1985) in Palik: “Handbook of Optical Constants of Solids”; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

SiO2(s)__Mie

Si-O2-NatAbund(s)_amorphous__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Henning&Mutschke (1997), A&A Vol. 327; Philipp (1985) in Palik: “Handbook of Optical Constants of Solids”; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

SiO2(s)_crystalline__DHS

Si-O2-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Zeidler et al. (2013), A&A, Vol. 553:A81; Philipp (1985) in Palik: “Handbook of Optical Constants of Solids”; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

SiO2(s)_crystalline__Mie

Si-O2-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Zeidler et al. (2013), A&A, Vol. 553:A81; Philipp (1985) in Palik: “Handbook of Optical Constants of Solids”; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

TiC(s)_crystalline__DHS

Ti-C-NatAbund(s)_crystalline_000__DHS.R39_0.1-207mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Koide et al 1990, Phys Rev B, 42,4979; Henning & Mutschke 2001, Spec. Acta Part A57, 815

TiC(s)_crystalline__Mie

Ti-C-NatAbund(s)_crystalline_000__Mie.R39_0.1-207mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Koide et al 1990, Phys Rev B, 42,4979; Henning & Mutschke 2001, Spec. Acta Part A57, 815

TiO2(s)_crystalline__DHS

Ti-O2-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Zeidler et al. (2011), A&A 526:A68; Posch et al. (2003), Ap&SS, 149:437; Siefke et al. (2016), Adv. Opt. Mater. 4:1780; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

TiO2(s)_crystalline__Mie

Ti-O2-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Zeidler et al. (2011), A&A 526:A68; Posch et al. (2003), Ap&SS, 149:437; Siefke et al. (2016), Adv. Opt. Mater. 4:1780; Database of Optical Constants for Cosmic Dust, Laboratory Astrophysics Group of the AIU Jena

ZnS(s)_crystalline__DHS

Zn-S-NatAbund(s)_crystalline_000__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Palik & Addamiano (1985) in Palik: “Handbook of Optical Constants of Solids”

ZnS(s)_crystalline__Mie

Zn-S-NatAbund(s)_crystalline_000__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

Compilation of 10.1093/mnras/stx3141 which uses Palik & Addamiano (1985) in Palik: “Handbook of Optical Constants of Solids”

File naming convention

Cloud species follow a naming convention similar to that of the line species. In addition to the species name, the state of matter and other condensate-specific information are added. Partial naming is also allowed when using Radtrans objects.

Most of the condensate species opacities are given for their Earth natural isotopologue abundances. The very low resolving power of those opacities makes isotope-specific data largely irrelevant.

The source indication (after __ in the file name) is used to indicate the method of the opacity calculation:

  • DHS stands for “Distribution of Hollow Spheres” particles (see Min et al. 2005). Opacities calculated with this particle shape are generally considered more realistic.

  • Mie stands for spherical particles (opacities calculated with Mie theory).

Important

The cloud_species opacity name and the mass_fractions dictionary keys must match exactly.

Below are some working opacity name examples:

  • File names:

    • Mg2-Si-O4-NatAbund(s)_crystalline_062__DHS.R39_0.1-250mu.cotable.petitRADTRANS.h5

    • H2-O-NatAbund(l)__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

    • Fe-NatAbund(s)_amorphous__Mie.R39_0.1-250mu.cotable.petitRADTRANS.h5

  • Names valid in scripts:

    • Mg2SiO4(s)_crystalline

    • Mg2SiO4(s)_amorphous

    • H2O(l)

    • Fe(s)_crystalline__DHS

    • H2-O-NatAbund(s)_crystalline_194__Mie.R39_0.1-250mu

Hereafter are the explicit file naming rules for cloud species:

  • Cloud species names follow the same convention as the line species, with the following additions.

  • After the full chemical formula and the -NatAbund flag, if relevant, the physical state of the condensate is indicated between parenthesis: (s) for solids, (l) for liquids

  • For solid condensates only, after the state:

    • the internal structure of the condensate particles is indicated after a _, it can be either crystalline or amorphous,

    • in the rare case where the internal structure of the condensate particles is not indicated by the source providing the opacities, the label unclearStructure is used instead,

    • for amorphous solids, a string indicating the amorphous state in front of a _ can be added,

    • for crystalline solids, 3 numbers in front of a _ must be added, indicating the space group,

    • when the space group of crystals is not provided by the source or has not been verified yet, the number 000 is used (space group number range from 001 to 230).

  • For liquid condensates, the above requirements for solids do not apply.

  • The source and spectral information that follows the same rules as for the line species.

  • The extension of the file is always .cotable.petitRADTRANS.h5.

Rayleigh scatterers

In contrast with the above opacities, Rayleigh scattering cross-sections are are not stored into files. Instead, the cross-sections are calculated using wavelength-dependent best-fit parameters to measurements (see sources below) on-the-fly in petitRADTRANS.

Caution

For the high resolution mode of pRT (mode='lbl') the numerical cost of calculating Rayleigh cross sections becomes noticeable. Currently, the H2 and He Rayleigh scattering cross-sections benefit from an optimised code and are faster to calculate than the other listed species.

We intend to optimise all the Rayleigh scattering absorption calculations in a future update.

For low-resolution calculations (mode='c-k') the cost of calculating Rayleigh cross sections is negligible.

The Rayleigh scattering cross-sections available in pRT are listed below:

Caution

Like for the gas continuum absorbers, make sure to add abundances for all Rayleigh species you request. However, if a species that you add as a Rayleigh scatterer is already added as a line absorber mass fraction, even with extra identifiers (e.g., 'H2O__POKAZATEL'), do not add another entry to the mass fraction dictionary (so do not add 'H2O' if you requested 'H2O' Rayleigh scattering)! The danger is that the abundance is counted twice when calculating the mean molar mass of the atmosphere (which happens automatically in SpectralModel objects, or if you call petitRADTRANS.chemistry.utils.compute_mean_molar_masses()). Instead, pRT will cut off flags such as __POKAZATEL and sum over all isotopologues to build the Rayleigh scatterer mass fractions. If you add a Rayleigh species for which no corresponding line opacity is loaded, you must add a mass fraction entry, however.